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The Calculation of Resonance and Localisation Energies in 
Aromatic Molecules. 

By C. A. COULSON. 
[Reprint Order No. 5203.1 

A simple method is described whereby the x-electron resonance energy of 
an aromatic or conjugated molecule, and the localisation energies required 
in the discussion of chemical reactivity, may be obtained by means of one 
single numerical integration, without the need for explicit calculation of any 
of the energies of the separate molecular orbitals. The overlap integral may 
be included in these calculations. 

IT is often desired to calculate the resonance energy, or one of the possible localisation 
energies, for the x-electrons in an aromatic or conjugated molecule. For example, Coulson, 
Moser, and Barnett (preceding paper) required the para-localisation energy for various 
possible positions of reaction between maleic anhydride and Clar’s six-ringed polynuclear 
hydrocarbon 1 : 13 : 12-6 : 16 : 7-dibenzonaphthacene (zethrene). One way of making all 
these calculations is by direct solution of the appropriate secular determinants to give the 
energies of all the allowed molecular orbitals. But this is tedious, and may be avoided in 
the following manner. First, let us consider alternant hydrocarbons, since these are a t  
present by far the best understood. 

If we make the usual assumptions of simple molecular-orbital theory, that (i) all 
Coulomb terms have the same value a, (ii) all resonance integrals between neighbours have 
the same value p, (iii) all other resonance integrals are zero, and (iv) all overlap integrals 
between adjacent atomic orbitals have the same value S, and all other overlap integrals are 
zero, then, as Wheland ( J .  Amer. Chem. Soc., 1941, 63, 2025) and others have shown, the 
energies of the allowed molecular orbitals take the form 

where 
. . . . . . . . .  E~ = a + mjy (1) 

y=p-accS (2) . . . . . . . . .  
and mj, which varies from one level to  another, is related to the corresponding energy 
(a + kjp) obtained with neglect of overlap, by the equation 

. . . . .  (3) 

It is convenient to measure energy from a zero corresponding to E = a. This means 

The cj are found as roots of the secular determinant, and x = kjp is a root of the 
that the term cc in (1) may be omitted, so that E~ = mjy. 

equation 

where A(&) is the familiar secular determinant without overlap integrals. In  general 
p and y are both negative, and all the levels for which kj > 0 (and therefore also mj > 0) 
are doubly filled. Those for which kj < 0 are empty. There may or may not be certain 
zero-energy orbitals, and these may have 0, 1, or 2 electrons in them. But their presence 
makes no difference to the total x-electron energy E which, by the method introduced by 
the author (Proc. Camb. Phil. Soc., 1940,36,201), may be expressed as a contour integral : 

. . . . . . . . .  A(z) = O  (4) 

. . . .  (5) 

In this integral, which is valid for the case where S = 0 as well as S # 0, A’ denotes 
dbldz and the contour consists of the complete imaginary axis and the infinite semicircle 



3112 Coulson : T h e  Calcuulation of Resonance and 

to its left. For an alternant hydrocarbon A'(z)/A(z) is an odd function of z so that, as 
de Heer (Phil. Mag., 1960, 41, 370) shows, (5 )  may be written as 

Now let AKek stand for the secular determinant appropriate to a single Kekul6 structure, 
and EI(& the corresponding energy. Then E - EKek is merely the resonance energy X. 
s o  

Integration by parts, and the fact that, a t  large z ,  A l A g e k 4  1 allows this to be written 
(cf. Coulson and Longuet-Higgins, Proc. Roy. Soc., 1948, A ,  195, 188) 

This shows, as was noticed by de Heer, that the overlap integral exerts only a 
minor influence on the energies, since it appears only in the first factor under the integral, 
and occurs only as S2 and higher powers. With S N" 0.25, these additional terms would be 
expected to  be small. 

The integration in (7) is straightforward, but must be done numerically. The 
contribution from the infinite semicircle vanishes so that it may be written 

Numerical integration in the range 0 < ly/pl < 6 and an estimate of the contribution from 
ly/pl > 6 in the same manner as used by Coulson and Jacobs (J., 1949, 2805) usually 
provides a resonance energy of sufficient accuracy. But on account of the first factor in 
the integrand, the estimation of the contribution from ly/pl > 6 is not quite so simple as 
when S = 0. If there are double bonds in the molecule, then A K ~ ~ ( z )  = (z2 - P 2 ) n .  
Also we may use the expansion of A(z) obtained by the agthor (Pvoc. Cnwzb. Phil. Soc., 1949, 
43,202), viz. : 

A(z) = z ~ ~  - C # 2 ~ 2 n - 2  + C4p4~2a-4 - . . . . . . . . (9) 

where C, = number of carbon-carbon bonds in the molecule, and C4 = total number of 
pairs of non-contiguous bonds, etc. This means that 

and the method of Coulson and Jacobs (Zoc. cit.) will apply. 

proportions as follows. 
is not p, but xp,  where x is some constant to  be chosen later. 
integral must be xS instead of S. 
form taken by (8) is now 

It is possible, however, t o  reduce the contribution from ly/Pl > 6 to negligible 
In writing down AKek, let us suppose that the resonance integral 

The corresponding overlap 
The No such modifications, however, are made in A. 

where we have introduced the dimensionless variable t =y/p. 
(10) gives 

The expansion similar to 

(12) 3- + . . .  . . . A(it) C, - nx2 2C - C22 + nx4 
t 2  2t4 log---- - 

( f 2  + x2)7, - 
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If we now choose x so that 

then (12) simplifies to 
C2 - 3 . 2 ~ ~  = 0 . . . . . . . . . (13) 

(14) 
A( i t )  2C* - C22 + 22 

- In+ . . .  . . . . . 1% ( t 2  + *2)n - 2t 

Explicit calculation for a variety of systems shows that the error resulting from complete 
neglect of that part of the integral in (11) which arises from Ill > 6 is less than 0 . 0 1 ~ .  
With this choice (13) for x, the energy of a Kekuli structure is 

Thus the total energy of the x-electrons in the original molecule is 

where x2 = C2/n and the effective range of integration is only 0 < t < 6. 
integration presents no difficulties. 

Numerical 

FIG. 1.  FIG. 2. 

We have given this analysis in full. But our remaining applications of the method can 
be greatly abbreviated since they follow essentially the same basic idea. 

Bond Localisation Energies.-The bond localisation energy (R. D. Brown, Quart. Reviews, 
1952, 6, 63) is defined as the energy necessary to localise a pair of x-electrons in a particular 
bond, which is supposed to be isolated from the rest of the resonating framework. Thus, 
in Fig. 1, the bond-localisation energy Ebondloc. for the bond 1-2 is the difference in 
x-electron energies of the two systems shown as (a) and ( b ) ;  in each case x-electrons are 
mobile within, but not across, the dotted lines. We are effectively comparing E for two 
systems. In the first system we take p as resonance integral for all the bonds : in the 
second we put = PZ3 7 0 ,  so that, in effect, no interaction can taken place across the 
bonds 1-6 and 2-3, leading to isolation of the two parts of the molecule. If A and Ab 
denote the secular determinants (without overlap) for these two systems, then by analogy 
with (8) 

There are the same number of carbon atoms in both structures, and so the expression 
A / A b  tends to unity quite fast as y L$Te may now expand (17) in the form (10) 
and use the method of Coulson and Jacobs for numerical integration. Alternatively we 
may improve the convergence by a process analogous to that used in passing from (8) to  
(16). If we introduce a fictitious p and S for the localised bond, with values xp, xS, but 
keep all the other non-vanishing p and S unchanged, then it may be shown, after a little 
reduction that 

M. 

A ( i y )  - (3 - x2)p2 log- - +.. .  . . 
Ab(z3.)) Y 2  (18) . . . .  
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If we choose x = d3 we find that the contribution from values of ly/pl > 6 in (17) is quite 
negligible. Numerical integration is now straightforward. We can write 

where Ab* is the secular determinant for the fictitious system corresponding to Fig. l b  and 
in which p for the localised bond is replaced by pq3.  The terms in square brackets in (19) 
are needed to correct for the false energy attributed to the isolated double bond 1-2 by 
the use of xp instead of 8. The relation between (19) and (16) is immediately clear if we 
recognise that a single Kekul6 structure is one which we reach by successively localising 
double bonds in the manner of Fig. 1 until all the bonds are either single or double. 

Para-localisation Energy.-The para-localisation energy is the energy required to localise 
two electrons on atoms which (Fig. 2) are para to each other. If we regard our previous 
bond-localisation as an ortho-process , then this is the corresponding para-process. Instead 
of (1 7) we shall have 

where A, is the secular determinant for the system, such as in Fig. 2b, consisting of two 
isolated atoms (here 3 and 6) with one x-electron each, and the residual molecule (here 
ethylene and a smaller polynuclear hydrocarbon). The integration in (20) may be 

F I G .  

performed without difficulty; but it is a little 
arising from the isolated atoms (here 3 and 6). 

more tedious since A&) contains a factor z2 
This factor causes a logarithmic infinity in 

the integrand near z = 0. We cannot merely leave this factor out because the convergence 
of (20) at large y then becomes too slow for convenience. But if, for mathematical 
convenience, we imagine the para-atoms to be joined by a fictitious bond with resonance 
integral xp, we avoid the logarithmic infinity at the origin, and we reduce the integrand to 
very small values at large y by putting x = 2. The new formula which replaces (20) is 

where 

A(iy) dy . . . (21) 

Ap*(iy) = A p ( 9 )  X (y2 + 4P2)/y2 . . . . . . (22) 

The first term on the right in (21) is needed to compensate for the fictitious bond which we 
have introduced between atoms 6 and 3. Despite its appearance A,*(iy) is finite at y = 0. 
In this way para-localisation energies are found by one single integration. 

Atom-localisation Energy.-The atom localisation energy, E,bm IN., was originally 
introduced by Wheland (J .  Amer. Chew. SOC., 1942,64,900) in a discussion of the transition 
state in chemical reactions. According as the reaction is electrophilic, free-radical, or 
nucleophilic, we require to localise 2, 1, or 0 electrons on one particular atom (e.g., atom 2 
in Fig. 3). This means that we have 2n - 2,  2n - 1, or 2n electrons in the residual 
molecule shown within the broken lines in Fig. 36. This is an odd alternant, so that the 
top occupied orbital has zero energy. As a result-a situation already recognised by 
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several writers-the localisation energy, Eabm lot., is the same for all three types of reaction. 
An analysis very similar to that which led up to (20) shows that we may write 

where Aa is the secular determinant A with (in the particular case of Fig. 3) Pzl = 0 = Pz3. 
Once again Aa involves a factor y 2  so that the numerical integration has to  deal with a 
logarithmic infinity at y = 0. Just as in (21) this may be much simplified, both at y = 0 
and y = 00, by a transformation to 

where 

The advantage of equations (16), (19), (21), and (24) is that they reduce the calculation of 
the various resonance and localisation energies to the evaluation of one single integral. 
On account of the fact that in each case the integrand tends to zero very rapidly as y 
increases, the contribution from ly/Pl > 6 is negligible for almost all purposes. Further- 
more these energies are given directly, and are not obtained as the relatively small 
differences between two fairly large and nearly equal energies. This greatly increases the 
accuracy available with the same amount of numerical effort. 

Non-dternants and HeteromoZecuZes.-Our previous discussion has dealt solely with the 
case of alternant hydrocarbons. These are the systems most commonly studied, and 
most easily handled. When we are concerned with non-alternant hydrocarbons (e.g. 
fulvene, azulene) or heterocyclic systems (e.g., pyridine) general formulations like our 
previous ones are no longer possible. But in any particular case formuk which serve the 
same purpose may be found without difficulty. We can no longer use the relationships 
(1)-(3), but must deal all the time with the full secular determinant (Ao say) involving S 
and the various or's. Instead of using (5) and (6) as our starting point, we must fall back 
on the more cumbrous formula 

(25) Aa*(iy) = Aa(iy) x (y2 + 2P2)/y2 . . . . .  

This leads to the resonance energy formula 

where A,K& is the secular determinant, including S and a,  for a Kekul6 structure. 
may be converted into 

This 

R=-7flog(*)dz 1 . . . . . . 
XZ Ao, K e d Z )  

and so into an integral along the y-axis. But, on account of the complex character of 
A,,(iy), the whole analysis becomes more clumsy. For that reason we shall not here 
attempt to go beyond (28). 
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